Carlos Adrian Correa Florez, MINES ParisTech PhD, PERSEE center




CoRDÉES : gouvernance énergétique de quartier


Prédiction solaire pour des suiveurs photovoltaïques


The REstable project



Optimisation de grande dimension des actifs distribués dans les systèmes électriques intelligents

Optimisation de grande dimension des actifs distribués dans les systèmes électriques intelligents

High-dimensional optimization of distributed assets in smart grids


Energétique et génie des procédés

Ecole doctorale

ISMME - Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique

Directeur de thèse


Unité de recherche

Energétique et Procédés

Date de validité


Date de début de thèse


Site Web

Digitalisation de l'énergie, data science, edge analytics, systèmes électriques intelligents, optimisation, intelligence distribuée

Energy digitalization, data science, edge analytics, smart grids, distributed intelligence, optimization



Context and challenges:

In the vertically integrated electrical energy systems of the past, power system management was carried out centrally by the transmission and distribution system operators (TSOs, DSOs). In the frame of the energy transition, emerging new actors (aggregators, microgrid operators, energy community managers, self-consumption etc.) and the proliferation of assets connected to the grid, such as renewable energy (RES) plants, storage devices, electric vehicles (EVs), smart-homes/prosumers with IoT devices, electric heating/cooling systems, etc., urge for a paradigm shift towards decentralization. New business models are likely to be based on physical or virtual groupings of assets (“cells”), instantiated as virtual power plants (VPPs), energy communities, microgrids, and others. In the power systems of the future, all these “cell” variants will probably coexist, and their operation should be optimized accounting for the specific interests of the involved actors. For example, a VPP operator aggregates hundreds to thousands of assets to achieve a critical mass of flexibility and valorize it in electricity markets. Optimization functions (“distributed intelligence”) are necessary at these lower levels down to the grid edge (cell, feeders, assets/devices…) and also need to be aligned with the grid operation.

Main objective of the thesis:

The overarching objective of this research project is to develop distributed optimization methods for grids with a very large number (tens/hundreds of thousands to millions) of connected devices. The aim is to account for the involved uncertainties, the classification of assets/devices into different typologies of virtual/physical cells, their computational/communication capabilities/limitations, environmental disturbances, QoS/grid constraints, and privacy concerns. Large scale distributed optimization requires the design of appropriate grid-aware signals that affect the local optimization processes for a multitude of devices, so that their aggregation provides a predictable response (even though it is the result of the response of different assets), while ensuring an optimal use of grid infrastructure.

Methodology and expected results:

The first step of the research project is a bibliographic research and familiarization with the methods and tools developed at our Group. The initial use case of focus will be the predictive management (scheduling) of the assets (for time frames in the order of a few minutes to a few days ahead). The developed approaches should be scalable to a very high number of assets, with inherent uncertainties in their production/consumption profiles, to cover use cases such as distribution grids and/or VPPs that integrate EVs, RES plants, storage devices, prosumers and the like. The research project will integrate predictive models that reduce the complexity associated to multiple uncertainties, employ machine learning and/or statistical methods for high dimensional problems (e.g., sparse models, functional data analysis, edge ML), and explore distributed optimization strategies to cope with the very large problem sizes. Optimization strategies will involve decomposition methods, blended with machine learning developments (e.g., optimal decision trees able to adapt dynamically to the vast amount of incoming information), and produce signals that account for the local grid conditions (i.e., congestions/overloads) to which the different cells of assets respond based on their capabilities and individual objectives.




Co-encadrant: Dr. Panagiotis Andrianesis, Chargé de recherche au Centre PERSEE.

Quotités d'encadrement :
Georges Kariniotakis : 30%
Panagiotis Andrianesis: 70%

Profil candidat


Please send the following elements by email To Prof. George Kariniotakis (georges.kariniotakis@minesparis.psl.eu) AND to Dr. Panagiotis Andrianesis (panagiotis.andrianesis@minesparis.psl.eu):

• Curriculum vitae (CV).
• Motivational letter for the application (cover letter).
• Contact details of two individuals that can provide a letter of reference (and eventually available already letters of reference).
• Copy of grade transcripts and last diploma (in English or French).

Please use in the title of email the acronym of this PhD topic “PHD-2024-DistrOptim”

Deadline for applications: 29/02/2024. The position will remain open until a suitable candidate is found.

Do not hesitate to email to the above addresses for an early expression of interest and for further information on the position.



Type financement

Financement d'un établissement public Français

Retour à la liste des propositions



240 ans de recherche et de formation

Ecole 240 ans de recherche et de formation Vidéo : 240ans de recherche…
> En savoir +

Une présence remarquable du Centre PERSEE à la conférence phare dans le domaine des réseaux électriques IEEE ISGT Europe 2023

International Une présence remarquable du Centre PERSEE à la…   Le groupe ERSEI du Centre PERSEE de Mines Paris…
> En savoir +

Mines Paris plébiscitée par ses étudiantes

Formation Mines Paris plébiscitée par ses étudiantes Mines Paris - PSL, une école qui répond…
> En savoir +

Le MS ENR parmi les meilleures formations françaises « Énergies Renouvelables »

Formation Le MS ENR parmi les meilleures formations… Les élèves du master EnR Le Mastère…
> En savoir +

Femmes de science

Formation Femmes de science Chercheuses confirmées, doctorantes, élèves ou alumni,…
> En savoir +

Quelle école d’ingénieurs a le meilleur réseau LinkedIn ?

Formation Quelle école d’ingénieurs a le…  Mines Paris - PSL au Top 5 du classement LinkedIn 2023…
> En savoir +

+ Toutes les actualités

Mentions légales efil.fr © 2014 Mines Paris - PSL